Skydiving

Getting Ready

Navigate to the Skydiving Interactive at TPC (http://www.physicsclassroom.com).

$$
\text { Home Page }==>\text { Physics Interactives }==>\text { Newton's Laws }==>\text { Skydiving }
$$

Click/tap the Launch Interactive button.

Getting Acquainted:

Experiment with the interface until you become comfortable using it. There are two choices for falling objects - a can of frosting and a gold brick. They can fall with or without a parachute. The parachute can be added at any time; you have two options - a large or a small parachute. You can position the falling object by dragging it to a starting position as high as 490 meters. The left side of the window displays a Force Diagram and a Velocimeter.

Explore

Use the Interactive to explore the following questions:

1. Drop a gold brick from a height of $\mathbf{4 9 0}$ meters. Use some carefully-chosen words and a couple of good sentences to describe the speed of the brick during the falling motion. (NOTE: The speed is the absolute value of the velocimeter reading.)
2. Describe how the amount of Air Drag changes over the course of the fall.
3. Note that the brick's speed eventually becomes constant. This constant

Force Diagram speed value that the brick attains is known as the terminal speed. How do the two forces compare to one another when the terminal speed is reached by the brick?

In the space at the right, draw the force diagram for this terminal speed moment.
4. Run some trials to determine the terminal speed value for the two different objects - without a parachute, with a small parachute, and with a large parachute.

	Terminal Speed (m/s) for Several Conditions		
	No Parachute	Small Parachute	Large Parachute
Gold Brick			
Can of Frosting			

5. Describe how the weight of the falling object affects the terminal speed.
6. Describe how the parachute size affects the terminal speed. Propose a theoretical reason for this cause-effect relationship.
7. Drop a gold brick from 490 meters. Once the brick reaches terminal speed, add a large parachute. Describe the sequence of changes that occur - immediately and over the course of time - after the parachute is added.
8. Draw four Force Diagrams showing the relative size of the forces for Question \#7.

No Parachute (@ term. speed)
Force Diagram

Large Parachute (immediately after adding)

Force Diagram
$\underset{(\sim 1 \text { second after adding) }}{\text { Large Parachute }}$
Force Diagram
$\underset{\text { (just before landing) }}{\text { Large Parachute }}$
(just before landing)
Force Diagram

