Newton's Law of Universal Gravitation Lesson Notes

Learning Outcomes

- What is the conceptual meaning of Newton's Law of Universal Gravitation?
- How is the Law of Universal Gravitation used to solve Physics word problems?

Universal Gravitation Relationships

- The force of gravitational attraction (Fgrav) between any two objects is inversely proportional to the square of the distance (\mathbf{d}^{2}) between the objects' centers.
- The force of gravitational attraction (Fgrav) between any two objects is directly proportional to the product of the masses $\left(\mathbf{M}_{1} \cdot \mathbf{M}_{2}\right)$ of the two

$$
F_{\text {grav }} \sim 1 / d^{2}
$$

$F_{\text {grav }} \sim M_{1} \bullet M_{2}$ attracting objects.

Thinking Proportionally - Distance

By whatever factor the separation distance is changed, the Fgrav value is changed in the opposite direction by the square of that factor.

Double separation distance $\Rightarrow F_{\text {grav }}$ becomes 1/4-th the original value.
Triple separation distance $\Rightarrow F_{\text {grav }}$ becomes 1/9-th the original value.
Halve separation distance $\Rightarrow F_{\text {grav }}$ becomes 4 times the original value.
And from Newton's Apple and the Moon argument:
$60 X$ separation distance $\Rightarrow F_{\text {grav }}$ becomes $1 / 3600$-th the original value.

Thinking Proportionally - Mass

By whatever factor either mass is changed, the Fgrav value is changed by the same factor. If both mass values are changed, then two changed must be made to the Fgrav.

Double $M_{1} \Rightarrow F_{\text {grav }}$ becomes $2 X$ the original value.
Triple $M_{2} \Rightarrow F_{\text {grav }}$ becomes $3 X$ the original value.
Double M_{1} and Triple $M_{2} \Rightarrow F_{\text {grav }}$ becomes $6 X$ the original value.
Halve $M_{1} \Rightarrow F_{\text {grav }}$ becomes $1 / 2$ the original value.
Halve M_{1} and Triple $M_{2} \Rightarrow F_{\text {grav }}$ becomes $1.5 X$ the original value.

Universal Gravitation Constant

Newton's Law of Universal Gravitation is a proportionality statement with no known value for the proportionality constant. The proportionality constant - known as the Universal Gravitation Constant was determined years later.

$$
F_{\text {grav }}=G \cdot M_{1} \cdot M_{2} / d^{2} \quad \text { where } \quad G=6.6743 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Show your solution to the four example Problems (Slides 6, 8, 9, and 10)

Example Problem 1 - Thinking Proportionally

Two objects - A and B - having the same mass are located in a different set of gravitational conditions. The relative planet mass (expressed in terms of M) and the relative distance of each location from the planet's center (expressed in terms of R) are shown. The gravitational force is greatest at location
\qquad ... by a factor of \qquad .

M, R

B •

3•M, 2•R

Example Problem 2 - The Sun and the Earth

Determine the force of gravitational attraction between the Sun (M sun=1.989×10 ${ }^{30} \mathrm{~kg}$) and the Earth as you stand on its surface ($\mathrm{Mearth}=5.972 \times 10^{24} \mathrm{~kg}$, dsun-Earth $=1.496 \times 10^{11} \mathrm{~m}$).

Example Problem 3 - You and the Earth

Determine the force of gravitational attraction between you ($\mathrm{M}_{\text {You }}=75 \mathrm{~kg}$) and the Earth as you stand on its surface ($M_{\text {earth }}=5.972 \times 10^{24} \mathrm{~kg}$, $R_{\text {earth }}=6.3781 \times 10^{6} \mathrm{~m}$).

Example Problem 4 - You and Your Lab Partner

 Determine the force of gravitational attraction between you (Myou=75 kg) and your lab partner (MPartner=62 kg) when sitting in your seats, spaced 1.2 meters apart (measured from their centers).