The Value of g

Lesson Notes

Learning Outcomes

- What variables affect the gravitational field strength?
- How can the gravitational field strength be calculated?

Derivation of Gravitational Field Strength (g)

The equation for gravitational field strength can be derived from Newton's Universal Law of Gravitation and the class $F_{\text {grav }}=\mathrm{m} \cdot \mathrm{g}$ formula.

Location! Location! Location!

Derived through the use of the Law of Universal Gravitation, the fundamental equation for calculating the gravitational field strength (g) is ...

$$
\mathrm{g}=\mathrm{G} \cdot \frac{\mathrm{M}_{\text {planet }}}{\mathrm{d}^{2}} \quad \begin{aligned}
& \mathrm{G}=6.6743 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& \mathrm{~d}=\text { distance to the planet's center }
\end{aligned}
$$

The value of g is location dependent!!
The variables that effect g are related solely to the gravitational environment where the object is located.
Object mass does not factor into the equation.

Height Matters

Let's use our equation to calculate g at various heights.

Location	d from Earth's center (m)	Value of \mathbf{g} ($\mathrm{m} / \mathrm{s}^{2}$)
Earth's surface	$6.38 \times 10^{6} \mathrm{~m}$	9.80
3000 km above surface	$9.38 \times 10^{6} \mathrm{~m}$	4.53
6000 km above surface	$1.24 \times 10^{7} \mathrm{~m}$	2.60
8000 km above surface	$1.44 \times 10^{7} \mathrm{~m}$	1.93
10000 km above surface	$1.64 \times 10^{7} \mathrm{~m}$	1.49
50000 km above surface	$5.64 \times 10^{7} \mathrm{~m}$	0.13

Out of This World

The equation for g is universal. So it can be used to calculate g on the surface of other planets if given their planet mass and planet radius.

Planet	Radius (m)	Mass (kg)	$\mathrm{g}\left(\mathrm{m} / \mathrm{s}^{2}\right)$
Mercury	2.43×10^{6}	3.2×10^{23}	3.61
Venus	6.073×10^{6}	4.88×10^{24}	8.83
Mars	3.38×10^{6}	6.42×10^{23}	3.75
Jupiter	6.98×10^{7}	1.901×10^{27}	26.0
Saturn	5.82×10^{7}	5.68×10^{26}	11.2
Uranus	2.35×10^{7}	8.68×10^{25}	10.5
Neptune	2.27×10^{7}	1.03×10^{26}	13.3

Show your solutions to Example Problem 1 and Example Problem 2 on Slides 7 and 8.
Example Problem 1
Determine the value of g on the moon's surface given that ...

$$
M_{\text {moon }}=7.346 \times 10^{22} \mathrm{~kg}, R_{\text {moon }}=1.74 \times 10^{6} \mathrm{~m}
$$

Example Problem 2

What is the value of g on the Space Shuttle when it is orbiting earth at an altitude of 500 km above its surface?

$$
\text { Given: } M_{\text {earth }}=5.972 \times 10^{24} \mathrm{~kg}, R_{\text {earth }}=6.3781 \times 10^{6} \mathrm{~m}
$$

