## Acceleration Lesson Notes

**Velocity** Speed + Direction (at any given instant in time)

Accelerating Objects are changing their velocity ... either their speed or their direction.

Three ways to accelerate:

1. Speed up2. Slow down3. Change directions

**Acceleration** The rate at which the velocity changes.

Acceleration Equation:

|                                     | Appeloration = | $\Delta \textbf{velocity}$ |         | Δν      |  |
|-------------------------------------|----------------|----------------------------|---------|---------|--|
|                                     | Acceleration – | ∆time                      | ave ave | Δt      |  |
| Acceleration Units:<br>1. (mi/hr)/s | 2. (km/hr)/s   | 3.                         | (m/s)/s | 4. m/s² |  |

An acceleration of 5.0 m/s/s means ...

... the velocity of the object changes by 5.0 m/s every 1.0 second of travel.

Determining acceleration values from velocity-time data (answers at end of page):

| Table 1  |                | Та       | Table 2        |          | Table 3        |          | Table 4        |  |
|----------|----------------|----------|----------------|----------|----------------|----------|----------------|--|
| Time (s) | Velocity (m/s) |  |
| 0.0      | 0.0            | 0.0      | 12.0           | 0.0      | 0.0            | 0.0      | 0.0            |  |
| 1.0      | 5.0            | 1.0      | 15.0           | 1.0      | 4.0            | 1.0      | 2.0            |  |
| 2.0      | 10.0           | 2.0      | 18.0           | 2.0      | 8.0            | 2.0      | 4.0            |  |
| 3.0      | 15.0           | 3.0      | 21.0           | 3.0      | 12.0           | 3.0      | 6.0            |  |
| 4.0      | 20.0           | 4.0      | 24.0           | 4.0      | 16.0           | 4.0      | 8.0            |  |
| 5.0      | 25.0           | 5.0      | 27.0           | 5.0      | 20.0           | 5.0      | 10.0           |  |

## **Rules for Acceleration Direction**

- 1. For a **speeding up** object, acceleration is in the **same direction** that object moves.
- 2. For a slowing down object, acceleration is in the opposite direction that object moves.

(**Review**: for **Velocity**, direction of velocity vector is the same direction that object moves.)



**Your Turn:** A sled accelerates from 1.4 m/s to 7.9 m/s in 5.1 s. Determine the acceleration of the sled.

An acceleration of -6.2 m/s/s means accelerating left (or west or down ...) at 6.2 m/s/s.

A uniform acceleration means the velocity is changing by the same amount each second.