Acceleration

Lesson Notes

Velocity \quad Speed + Direction (at any given instant in time)
Accelerating Objects are changing their velocity ... either their speed or their direction.
Three ways to accelerate:

1. Speed up
2. Slow down
3. Change directions

Acceleration The rate at which the velocity changes.
Acceleration Equation:

$$
\text { Acceleration }=\frac{\Delta v e l o c i t y}{\Delta \text { time }} \quad \mathbf{a}_{\text {ave }}=\frac{\Delta \mathbf{v}}{\Delta \mathbf{t}}
$$

Acceleration Units:

1. $(\mathrm{mi} / \mathrm{hr}) / \mathrm{s}$
2. $(\mathrm{km} / \mathrm{hr}) / \mathrm{s}$
3. $(\mathrm{m} / \mathrm{s}) / \mathrm{s}$
4. $\mathrm{m} / \mathrm{s}^{2}$

An acceleration of $5.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ means
... the velocity of the object changes by $5.0 \mathrm{~m} / \mathrm{s}$ every 1.0 second of travel.

Determining acceleration values from velocity-time data (answers at end of page):

Table 1		Table 2		Table 3		Table 4	
Time (s)	Velocity (m / s)	Time (s)	Velocity (m/s)	Time (s)	Velocity (m/s)	Time (s)	Velocity (m/s)
0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.0
1.0	5.0	1.0	15.0	1.0	4.0	1.0	2.0
2.0	10.0	2.0	18.0	2.0	8.0	2.0	4.0
3.0	15.0	3.0	21.0	3.0	12.0	3.0	6.0
4.0	20.0	4.0	24.0	4.0	16.0	4.0	8.0
5.0	25.0	5.0	27.0	5.0	20.0	5.0	10.0

Rules for Acceleration Direction

1. For a speeding up object, acceleration is in the same direction that object moves.
2. For a slowing down object, acceleration is in the opposite direction that object moves.
(Review: for Velocity, direction of velocity vector is the same direction that object moves.)

> Moving right and speeding up:
Moving right and slowing down:
Moving left and slowing down:
v is right a is right

$$
\mathbf{v} \text { is right }
$$

a is left

speeding up:

$$
v \text { is left } \quad a \text { is left }
$$

\mathbf{v} is left $\quad \mathbf{a}$ is right

Your Turn: \quad A sled accelerates from $1.4 \mathrm{~m} / \mathrm{s}$ to $7.9 \mathrm{~m} / \mathrm{s}$ in 5.1 s . Determine the acceleration of the sled.

An acceleration of $-6.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ means accelerating left (or west or down ...) at $6.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
A uniform acceleration means the velocity is changing by the same amount each second.

