Kinematic Equations – An Introduction Lesson Notes

The BIG 4:

$$d = v_{o} \cdot t + \frac{1}{2} \cdot a \cdot t^{2}$$

$$v_{f}^{2} = v_{o}^{2} + 2 \cdot a \cdot d$$

$$d = (v_{o} + v_{f}) / 2 \cdot t$$

$$v_{f} = v_{o} + a \cdot t$$

$$d: displacement$$

$$a: acceleration$$

$$t: time$$

$$v_{o}: original velocity$$

$$v_{f}: final velocity$$

Special Conditions

Under the following special conditions, the BIG 4 simplify to shorter equations:

Starts from rest (vo = 0)	Comes to a stop (vf = 0)	Constant Velocity (a=0)
$\mathbf{d} = \frac{1}{2} \cdot \mathbf{a} \cdot \mathbf{t}^2$	$\mathbf{d} = \mathbf{v}_{0} \cdot \mathbf{t} + \frac{1}{2} \cdot \mathbf{a} \cdot \mathbf{t}^{2}$	d = v • t
$v_f^2 = 2 \cdot a \cdot d$	$v_o^2 = -2 \cdot a \cdot d$	$v_{f}^{2} = v_{o}^{2}$
d = (v _f) / 2 • t	$d = (v_{o}) / 2 \cdot t$	d = v • t
$v_f = a \cdot t$	v _° = -a • t	$\mathbf{v}_{f} = \mathbf{v}_{o}$

Problem-Solving Strategy

- Read the problem carefully. Identify the known values of three of the five variables. Write down the known values. Relate the values to the symbols; e.g., v_o = 15 m/s.
- 2. Identify the unknown variable. Write in symbol form.
- 3. Now you have four variable symbols 3 with known values and one of unknown value. Find the kinematic equation that contains these four variables. Write the equation down.
- 4. Substitute known values into this equation.
- 5. Perform algebra and calculations to solve for the unknown variable.

An Important Caution:

The quantities d, v, and a are all vectors; they include a direction. Your substituted values need to include this directional information as a + or - sign.