Velocity-Time Graphs: Calculating Displacement from Area Lesson Notes

The BIG Idea:
The area between the line on a $v-t$ graph and the time axis is equal to the amount of displacement during that time interval.

Three Types of Area Calculations

Rectangle

Triangle

Trapezoid

Example 1:

Lisa Ford drives at a constant speed of $18 \mathrm{~m} / \mathrm{s}$ for 12 s . Determine the displacement.

Example 2:

Inna Hurry accelerates from rest to $32 \mathrm{~m} / \mathrm{s}$ in 4.0 s . Determine the displacement.

Example 3:

Jeremy accelerates from $4.0 \mathrm{~m} / \mathrm{s}$ to $12.0 \mathrm{~m} / \mathrm{s}$ in 5.0 s . Determine the displacement.

Your Turn to Practice

A car is moving at an initial speed of $20 \mathrm{~m} / \mathrm{s}$ and then accelerates to $30 \mathrm{~m} / \mathrm{s}$ for 10.0 seconds. Construct the v-t graph and determine the displacement.

Negative Areas

A negative area occurs when the line is below the time axis. Negative signs in Physics seldom have numerical meaning. They typically have physical meaning. A negative sign signifies a direction ... like left or west or downward.

Axis Crossing

An object that changes direction will be represented by a line that crosses the time axis, like the motion of this upward-projected ball. There is a + area (for upward motion) and a - area (for downward motion.)

Area of a "Car"

For complex, multi-stage motions: break the total area into a series of smaller areas and calculate each individually.

Displacement $=A_{1}+A_{2}+A_{3}+A_{4}+A_{5}+A_{6}$

Your Turn to Practice
Determine the displacement of the object represented by the following graph.

