Velocity-Time Graphs: Calculating Displacement from Area Lesson Notes

The BIG Idea:

The **area** between the line on a v-t graph and the time axis is equal to the amount of **displacement** during that time interval.

Three Types of Area Calculations

Example 1:

Lisa Ford drives at a constant speed of 18 m/s for 12 s. Determine the displacement.

Example 2:

Inna Hurry accelerates from rest to 32 m/s in 4.0 s. Determine the displacement.

Example 3:

Jeremy accelerates from 4.0 m/s to 12.0 m/s in 5.0 s. Determine the displacement.

Your Turn to Practice

A car is moving at an initial speed of 20 m/s and then accelerates to 30 m/s for 10.0 seconds. Construct the v-t graph and determine the displacement.

Negative Areas

A *negative area* occurs when the line is below the time axis. Negative signs in Physics seldom have numerical meaning. They typically have physical meaning. A negative sign signifies a direction ... like left or west or downward.

Axis Crossing

An object that changes direction will be represented by a line that crosses the time axis, like the motion of this upward-projected ball. There is a + area (for upward motion) and a - area (for downward motion.)

Area of a "Car"

For complex, multi-stage motions: break the total area into a series of smaller areas and calculate each individually.

Your Turn to Practice

Determine the displacement of the object represented by the following graph.

