Air Resistance and Terminal Velocity Lesson Notes

Three Factors Affecting Air Resistance

- Air Density

As air density increases, air resistance increases; it's a linear relationship.

- Object speed

As speed increases, air resistance increases; it's a quadratic relationship.

- Object cross-sectional area (contour)
== Air resistance depdends on the area of the leading edge of the object that is passing through air. Greater areas result in greater air resistance.
== Air resistance also depends upon a shape related variable known as drag coefficient; this provides a measure of the ease with which particles move around the objects leading edge. A smaller drag coefficient is representative of less air resistance.

Falling with Air Resistance

For skydivers, air resistance opposes the force of gravity. Its value increases as speed increases. Eventually, Fair balances the $F_{\text {grav }}$ and the object stops accelerating. At this moment, terminal velocity is reached.

Terminal Velocity

The maximum velocity that an object attains.

As an object falls under the influence of air resistance, ...

- Speed increases.
- Air resistance increases.
- Net force decreases.
- Acceleration decreases.
\ldots and eventually the two forces balance, at which point the net force is 0 N , the acceleration is $0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, and terminal velocity is reached.

The Importance of Mass
More massive objects have a larger downward gravity force. So they require a greater air resistance for balanced forces.

Elephant Fs. Feather | The feather reaches |
| :---: |
| a terminal velocity |
| almost immediately; |
| it's a very small v . |

Analysis of the Falling Motion of a $15-\mathrm{kg}$ and a $\mathbf{6 0}-\mathrm{kg}$ Person
$5 \mathrm{~s} \quad$ Both persons are still accelerating. Neither has reached terminal velocity. The $60-\mathrm{kg}$ person is moving $14 \mathrm{~m} / \mathrm{s}$ faster.
15 kg Person 60 kg Person

10 s Terminal velocity has been reached by the 15kg person. The $60-\mathrm{kg}$ person is still accelerating. The $60-\mathrm{kg}$ person is moving 24 m / s faster.

15 kg Person

60 kg Person

15 s Terminal velocity was reached by the 15-kg person at 10 s . The $60-\mathrm{kg}$ person is still accelerating. The 60-kg person is moving 26 m / s faster.

15 kg Person

60 kg Person

20 s Terminal velocity was reached by the 15-kg person at 10 s . The $60-\mathrm{kg}$ person is still accelerating. The $60-\mathrm{kg}$ person is moving 27 m / s faster.

25 s Terminal velocity has now been reached by both persons. The $60-\mathrm{kg}$ person has twice the speed - $28 \mathrm{~m} / \mathrm{s}$ faster.

15 kg Person

60 kg Person

