Determining an Individual Force Value
 Lesson Notes

Newton's Second Law:
When the individual forces acting on an object are NOT balanced, the object accelerates.
The acceleration value is ...

$$
\mathrm{a}=\mathrm{F}_{\text {net }} / \mathrm{m}
$$

What is Net Force?

$F_{\text {net }}$ is the net force (in Newtons). It refers to the result of adding all the forces as vectors. As shown at the right, the four forces add up to 15 N , right.

Determining an Individual Force

In this Lesson, Newton's second law is rearranged to form

$$
F_{\text {net }}=m \cdot a
$$

If values of m and a are known, the $F_{\text {net }}$ can be calculated ... and then used to determine the missing force value in a free-body diagram.

m is often found from $F_{\text {grav }}=m \cdot(9.8 N / k g)$.
In the problem depicted at the right, three forces and the value of acceleration are known. The fourth force must be calculated.

$$
\begin{aligned}
& \mathrm{a}=4.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}, \text { right } \\
& \mathrm{m}= \\
& \mathrm{F}_{\text {net }}= \\
& ? ? ?
\end{aligned}
$$

Example 1:

A $62-\mathrm{kg}$ skydiver is accelerating downward at $4.6 \mathrm{~m} / \mathrm{s}^{2}$. Determine the air resistance force.

Solution:

Example 2:

A rightward force of 373 N is applied to a 118-kg object to accelerate it rightward at $1.24 \mathrm{~m} / \mathrm{s}^{2}$. Determine the friction force.

Solution:

$$
\begin{aligned}
& \mathrm{m}=118 \mathrm{~kg} \\
& \mathrm{a}=1.24 \mathrm{~m} / \mathrm{s} / \mathrm{s}, \mathrm{Rt} \\
& \mathrm{~F}_{\text {net }}= \\
& \mathrm{F}_{\text {frict }}=
\end{aligned}
$$

Example 3:

Determine the tension force required to accelerate a $4.80-\mathrm{kg}$ bucket upward out of a well at $0.825 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

$$
\begin{aligned}
\mathrm{m} & =\frac{4.80 \mathrm{~kg}}{\mathrm{a}}= \\
\mathrm{F}_{\mathrm{net}} & = \\
\mathrm{F}_{\text {tens }} & =
\end{aligned}
$$

Example 4:
A 525-N rightward force is applied to accelerate a $65.0-\mathrm{kg}$ object at $4.16 \mathrm{~m} / \mathrm{s}^{2}$. Determine the coefficient of friction.

Solution:

Solving for an individual force value:

- Draw a free-body diagram.
- Identify values of all known forces ... and of the mass and the acceleration.
- Calculate the net force ($F_{\text {net }}=m \cdot a$)
- Use the value of $F_{\text {net }}$ to determine all missing force values.

