Newton's Second Law Lesson Notes

Newton's Second Law:

The acceleration of an object is ...

- Directly proportional to the net force that acts upon it, and
- Inversely proportional to the mass of the object, and
- In the same direction as the net force.

 Acceleration and Net Force Double F_{net} ⇒ Double a Triple F_{net} ⇒ Triple a Halve F_{net} ⇒ Halve a By whatever <i>factor</i> F_{net} is changed, a is changed by the 		F _{net} (N)	a (m/s²)
	1	20.0	4.0
	2	40.0	8.0
	3	60.0	12.0
	4	10.0	2.0
	5	5.0	
missing table cells.	6	30.0	
	7	80.0	

Your Turn to Practice a α F_{net}

- 1. An object has an acceleration of 16.0 m/s/s. If the net force acting upon this object were doubled, then its new acceleration would be _____ m/s/s.
- 2. An object has an acceleration of 16.0 m/s/s. If the net force acting upon this object were tripled, then its new acceleration would be _____ m/s/s.
- 3. An object has an acceleration of 16.0 m/s/s. If the net force acting upon this object were halved, then its new acceleration would be _____ m/s/s.
- 4. An object has an acceleration of 16.0 m/s/s. If the net force acting upon this object were 1/3 the original value, then its new acceleration would be _____ m/s/s.

 Acceleration and Mass Double m ⇒ Halve a Triple m ⇒ One-third a Halve m ⇒ Double a By whatever <i>factor</i> m is changed, a is changed by the recil 		m (kg)	a (m/s²)
	1	4.0	12.0
	2	8.0	6.0
	3	12.0	4.0
		2.0	24.0
	5	1.0	
missing table cells.	6	6.0	
	7	16.0	

Your Turn to Practice $a \alpha 1/m$

- 1. An object has an acceleration of **16.0 m/s/s**. If the mass of this object were **doubled**, then its **new acceleration** would be _____ m/s/s.
- 2. An object has an acceleration of **16.0 m/s/s**. If the mass of this object were **tripled**, then its **new acceleration** would be _____ m/s/s.
- 3. An object has an acceleration of **16.0 m/s/s**. If the mass of this object were **halved**, then its **new acceleration** would be _____ m/s/s.
- 4. An object has an acceleration of **16.0 m/s/s**. If the mass of this object were **1/3 the original value**, then its **new acceleration** would be _____ m/s/s.