Newton's Second Law
 Lesson Notes

Newton's Second Law:

The acceleration of an object is ...

- Directly proportional to the net force that acts upon it, and
- Inversely proportional to the mass of the object, and
- In the same direction as the net force.

Acceleration and Net Force

- Double $F_{\text {net }} \Rightarrow$ Double a
- Triple $\mathrm{F}_{\text {net }} \Rightarrow$ Triple a
- Halve $F_{\text {net }} \Rightarrow$ Halve a
- By whatever factor $\mathbf{F}_{\text {net }}$ is changed, \mathbf{a} is changed by th ϵ

	$F_{\text {net }}(N)$	$\mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$
1	20.0	4.0
2	40.0	8.0
3	60.0	12.0
4	10.0	2.0
5	5.0	
6	30.0	
7	80.0	

Your Turn to Practice $\quad a \alpha F_{\text {net }}$

1. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the net force acting upon this object were doubled, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.
2. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the net force acting upon this object were tripled, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.
3. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the net force acting upon this object were halved, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.
4. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the net force acting upon this object were $1 / 3$ the original value, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.

Acceleration and Mass

- Double $m \Rightarrow$ Halve a
- Triple $m \Rightarrow$ One-third a
- Halve $m \Rightarrow$ Double a
- By whatever factor \mathbf{m} is changed, \mathbf{a} is changed by the reci

	3	12.0	4.0
	4	2.0	24.0
	5	1.0	
Use the above to fill in the missing table cells.	6	6.0	
	7	16.0	

Your Turn to Practice a $\alpha 1 / \mathrm{m}$

1. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the mass of this object were doubled, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.
2. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the mass of this object were tripled, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.
3. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the mass of this object were halved, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.
4. An object has an acceleration of $16.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the mass of this object were $1 / 3$ the original value, then its new acceleration would be \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$.
