Convex Mirror Ray Diagrams
 Lesson Notes

Learning Outcomes

- How do you draw a ray diagram for an object placed at varying locations in front of a convex mirror?
- How do you describe the image produced by a convex mirror?

Convex Mirror Anatomy

- The outside of a sphere is the convex side of the sphere.
- A spherical Christmas ornament serves as a convex reflecting surface.
- The center of curvature (C) and the focal point (F) are behind the convex mirror.
- Rays of incident light traveling parallel to the principal axis reflect in
 line with the focal point.

Two Rules of Reflection for Convex Mirrors

$$
\begin{gathered}
\text { F = Focal Point } \\
\text { PA }=\text { Principal } \\
\text { Axis }
\end{gathered}
$$

Constructing Ray Diagrams fir Convex Mirrors ... a Procedure

Pick a point on top of object.
Draw two sets of incident-reflected rays:

- One II to PA and reflecting in line with F.
- One heading towards F and reflecting II to PA.

The image is the location where reflected rays intersect.

Practice

Use the procedure to draw ray diagrams for the two different object positions.

A Distant Location

A Nearby Location

LOST Art of Image Description
In both cases above, the image has the same characteristics:
Location: Behind the mirror; between mirror and F Orientation: Upright
Size: Reduced in size (i.e., smaller than object)
Type: Virtual

Optics Bench Simulator
 Find the simulator at:
 https://www.physicsclassroom.com/Physics-Interactives/Reflection-and-Mirrors/OpticsBench

Launch the interactive. Tap on the Lens button until it says Mirrors. Drag the candle (object) to the convex side of the mirror.

The general characteristics of a convex mirror image never change. As the object approaches the mirror, the image gets larger and approaches the mirror; but it remains upright, reduced, and virtual.

