Mathematics of Curved Mirrors
 Lesson Notes

Learning Outcomes

- How can the mirror equation be used to solve Physics word problems?
- What is meant by magnification (M) and how can the M ratio be used in solving Physics word problems?

The Mirror Equation

The mathematical relationship between object distance (d_{o}), image distance (d_{i}) and focal length (f) is given by the equation:

$$
1 / d_{o}+1 / d_{i}=1 / f
$$

Sign Conventions for Variables $\mathrm{d}_{\mathrm{o}}, \mathrm{d}_{\mathrm{i}}$, and f

$$
\begin{aligned}
& \mathbf{d}_{\mathbf{o}} \text { is always a + value } \\
& \mathbf{d}_{\mathbf{f}} \text { is + for real images and - for virtual images } \\
& \mathrm{f}_{\text {is }} \text { + for concave mirrors and - for convex mirrors. }
\end{aligned}
$$

Effective Problem-Solving Strategy

1. Read problem carefully.
2. ID given values; relate to variable symbols.
3. ID unknown variable.
4. ID the physics formula.
5. Substitute and solve algebraically.

Magnification

The magnification (M) of the image refers to how many times larger that the image is than the object: $\quad \mathrm{M}=\mathrm{h}_{\mathrm{i}} / \mathrm{h}_{\text {。 }}$ where $h_{i}=$ image height and h_{o} refers to object height.
The ratio of heights equals the ratio of distances: $h_{i} / h_{o}=-d_{i} / d_{0}$
Sign Conventions for Variables $d_{o}, d_{i}, h_{o}, h_{i}$, and f
d_{0} is always a + value
h_{0} is always a + value
d_{i} is + for real images and - for virtual images
$\mathbf{h}_{\mathbf{i}}$ is - for inverted (real) and + for upright (virtual) images
\mathbf{f} is + for concave mirrors and - for convex mirrors.

Example 1
Determine the image distance for a light bulb placed 45.0 cm from a concave mirror having a focal length of 15.0 cm .
Givens:
Unknown(s):
Formula(s):
Algebra/Solution:

Example 2

Determine the focal length of a convex mirror that produces an image that is 16.0 cm behind the mirror when the object is 28.5 cm from the mirror.

Givens:
Unknown(s):
Formula(s):
Algebra/Solution:

Example 3

A concave mirror with a focal length of 32.0 cm produces a $6.2-\mathrm{cm}$ tall, upright image when the object is 18.8 cm from the mirror. Determine the object height and the image distance.
Givens:
Unknown(s):
Formula(s):
Algebra/Solution:

Example 4

The focal point is 22.5 cm from a convex mirror. A $5.0-\mathrm{cm}$ tall light bulb is placed 48.1 cm from its surface. Determine the image distance and image height.

Givens:
Unknown(s):
Formula(s):
Algebra/Solution:

