# Mathematics of Lenses Lesson Notes

### Learning Outcomes

- How can the lens equation be used to solve Physics word problems?
- What is meant by magnification (M) and how can the M ratio be used in solving Physics word problems?

### **The Lens Equation**

The mathematical relationship between object distance (**d**<sub>0</sub>), image distance (**d**<sub>i</sub>) and focal length (**f**) is given by the equation:

 $1/d_{o} + 1/d_{i} = 1/f$ 

## Sign Conventions for Variables do, di, and f

do is always a + value
di is + for real images and - for virtual images
f is + for converging lenses and - for diverging lenses

### **Problem Solving Strategy ... Applied**

Solving a lens equation problem requires careful reading, good conceptual reasoning, and an effective problem-solving strategy.

### Example 1

Determine the image distance for a light bulb placed 45.0 cm from a converging lens having a focal length of 15.0 cm.

| Given:   | $d_0 = 45.0 \text{ cm}$ f = +15.0 cm                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------|
| Unknown: | $d_i = ???$                                                                                                                   |
| Formula: | $1/d_{o} + 1/d_{i} = 1/f$                                                                                                     |
| Algebra: | $1/(45.0) + 1/d_i = 1/(15.0)$<br>$1/d_i = 1/(15.0) - 1/(45.0) = 0.0444$<br>$d_i = 1/0.0444 \Rightarrow d_i = 22.5 \text{ cm}$ |

### **Effective Strategy**

- 1. Read problem carefully.
- 2. ID given values; relate to variable symbols.
- 3. ID unknown variable.
- 4. ID the physics formula.
- 5. Substitute and solve
- algebraically.

Use the problem-solving strategy to solve Example 2. Show your solution.

### Example 2

Determine the focal length of a lens that produces a virtual image that is 16.0 cm from the lens when the object is 28.5 cm from the lens.



## Magnification

The **magnification** (M) of the image refers to how many times larger that the image is than the object:  $M = h_i/h_o$  where  $h_i$  = image height and  $h_o$  refers to object height.

The ratio of heights equals the ratio of distances:  $h_i/h_0 = - d_i/d_0$ 

### Sign Conventions for Variables do, di, ho, hi, and f

 $d_0$  is always a + value  $h_0$  is always a + value  $d_i$  is + for real images and - for virtual images  $h_i$  is - for inverted (real) and + for upright (virtual) images f is + for converging lens and - for diverging lenses.

Use the problem-solving strategy to solve Examples 3 and 4. Show your solution.

#### Example 3

A converging lens with a focal length of 32.0 cm produces a 6.2-cm tall, upright image when the object is 18.8 cm from the lens. Determine the object height and the image distance.

### Example 4

The focal point is 22.5 cm from a diverging lens. A 5.0-cm tall light bulb is placed 48.1 cm from its surface. Determine the image distance and image height.