Mathematics of Lenses

Lesson Notes

Learning Outcomes

- How can the lens equation be used to solve Physics word problems?
- What is meant by magnification (M) and how can the M ratio be used in solving Physics word problems?

The Lens Equation

The mathematical relationship between object distance (d_{o}), image distance (d_{i}) and focal length (f) is given by the equation:

$$
1 / d_{o}+1 / d_{i}=1 / f
$$

Sign Conventions for Variables d_{0}, d_{i}, and f do is always a + value d_{i} is + for real images and - for virtual images

f is + for converging lenses and - for diverging lenses

Problem Solving Strategy ... Applied

Solving a lens equation problem requires careful reading, good conceptual reasoning, and an effective problem-solving strategy.

Example 1

Determine the image distance for a light bulb placed
45.0 cm from a converging lens having a focal length of 15.0 cm .

Given: $\quad d_{o}=45.0 \mathrm{~cm} \quad f=+15.0 \mathrm{~cm}$
Unknown: $d_{i}=$???
Formula: $1 / \mathrm{d}_{\mathrm{o}}+1 / \mathrm{di}_{\mathrm{i}}=1 / \mathrm{f}$
Algebra: $\quad 1 /(45.0)+1 / \mathrm{di}_{\mathrm{i}}=1 /(15.0)$
$1 / \mathrm{d}_{\mathrm{i}}=1 /(15.0)-1 /(45.0)=0.0444$

Effective Strategy

1. Read problem carefully.
2. ID given values; relate to variable symbols.
3. ID unknown variable.
4. ID the physics formula.
5. Substitute and solve algebraically.

Use the problem-solving strategy to solve Example 2. Show your solution.

Example 2

Determine the focal length of a lens that produces a virtual image that is 16.0 cm from the lens when the object is 28.5 cm from the lens.

Magnification

The magnification (\mathbf{M}) of the image refers to how many times larger that the image is than the object: $\quad M=h_{i} / h_{\text {o }}$
where $h_{i}=$ image height and h_{o} refers to object height.
The ratio of heights equals the ratio of distances: $h_{i} / h_{o}=-d_{i} / d_{o}$
Sign Conventions for Variables $d_{o}, d_{i}, h_{o}, h_{i}$, and f
d_{o} is always a + value
h_{0} is always a + value
d_{i} is + for real images and - for virtual images
h_{i} is - for inverted (real) and + for upright (virtual) images
f is + for converging lens and - for diverging lenses.
Use the problem-solving strategy to solve Examples 3 and 4. Show your solution.

Example 3

A converging lens with a focal length of 32.0 cm produces a $6.2-\mathrm{cm}$ tall, upright image when the object is 18.8 cm from the lens. Determine the object height and the image distance.

Example 4

The focal point is 22.5 cm from a diverging lens. A $5.0-\mathrm{cm}$ tall light bulb is placed 48.1 cm from its surface. Determine the image distance and image height.

