Optical Density, Light Speed, and the Index of Refraction Lesson Notes

Learning Outcomes

- How are the optical density of a material, the index of refraction of a material, and the speed of light in the material related?

REVIEW: Refraction at a Boundary

When a light wave crosses the boundary between two transparent materials, ...

- the speed changes
- the wavelength changes
- the direction changes

The change in direction of a light wave is known as refraction.

How can one predict whether the speed will increase or decrease when crossing the boundary?

Light Propagation Through a Medium

- Light waves are created by a vibrating charge, resulting in a rapidly fluctuating electric and magnetic field (an EM wave). Image Source: https://commons.wikimedia.org/ wiki/File:Electromagneticwave3Dfromside.gif
- An EM wave travel through empty space at $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, a value known as c .
- It's passage through a transparent material requires the absorption and re-emission of the electromagnetic energy.

- While the particle-to-particle speed is c, the absorptions and re-emissions results in a time delay and the overall speed at which light travels through a material is less than c .

Optical Density and Light Speed

- Every material has its own unique optical density.
- The optical density describes the general sluggishness of the atoms in absorbing, maintaining, and re-emitting the EM energy as light passes through it.
- The more optically dense that a material is, the slower that light will travel through that material.

Air	Water	Glass
Least		Diamond
Dense		Most
Fastest light		Dense
speed		Slowest light
	speed	

The Index of Refraction

The index of refraction (\mathbf{n}) describes how many times slower light travels in a material relative to its speed in a vacuum.

$$
\mathbf{n}=\frac{\mathbf{c}}{\mathbf{v}} \quad \begin{aligned}
& \mathbf{c}=\text { speed of light in vacuum }\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \\
& \mathbf{v}=\text { speed of light in a material }
\end{aligned}
$$

Light travels slowest in materials with the highest index of refraction values.

Material	n	$\mathrm{v}(\mathrm{m} / \mathrm{s})$
Air	1.00	3.00×10^{8}
Water	1.33	2.25×10^{8}
	1.52	1.97×10^{8}
	2.42	1.24×10^{8}

Optical Density, n, and Light Speed

- As the optical density increases, the speed of light decreases.
- As the n value increases, the speed of light decreases.
- Most dense materials \Rightarrow Largest n values \Rightarrow Slowest light speeds
- Least dense materials \Rightarrow Smallest n values \Rightarrow Fastest light speeds

The direction that light refracts and the amount that it refracts at a boundary is dependent upon the relative density, n values, and light speed of the two materials.

???

