Optical Density, Light Speed, and the Index of Refraction Lesson Notes

Learning Outcomes

• How are the optical density of a material, the index of refraction of a material, and the speed of light in the material related?

REVIEW: Refraction at a Boundary

When a light wave crosses the boundary between two transparent materials, ...

- the speed changes
- the wavelength changes
- the direction changes

The change in direction of a light wave is known as **refraction**.

How can one predict whether the speed will increase or decrease when crossing the boundary?

Light Propagation Through a Medium

- Light waves are created by a vibrating charge, resulting in a rapidly fluctuating electric and magnetic field (an *EM wave*).
 Image Source: https://commons.wikimedia.org/ wiki/File:Electromagneticwave3Dfromside.gif
- An EM wave travel through empty space at 3.00x10⁸ m/s, a value known as c.
- It's passage through a transparent material requires the absorption and re-emission of the electromagnetic energy.
- While the particle-to-particle speed is c, the absorptions and re-emissions results in a time delay and the overall speed at which light travels through a material is less than c.

Optical Density and Light Speed

- Every material has its own unique optical density.
- The optical density describes the general sluggishness of the atoms in absorbing, maintaining, and re-emitting the EM energy as light passes through it.
- The more optically dense that a material is, the slower that light will travel through that material.

Air	Water	Glass	Diamond
Least Dense			Most Dense
Fastest light speed			Slowest light speed

The Index of Refraction

The **index of refraction** (**n**) describes how many times slower light travels in a material relative to its speed in a vacuum.

$$n = \frac{c}{c}$$

c = speed of light in vacuum (3.00 x 10⁸ m/s)
v = speed of light in a material

Light travels slowest in materials with the highest index of refraction values.

Material	n	v (m/s)	
Air	1.00	3.00 x 10 ⁸ ◀	Fastest
Water	1.33	2.25 x 10 ⁸	
Glass	1.52	1.97 x 10 ⁸	
Diamond	2.42	1.24 x 10 ⁸ ◀	Slowest

Optical Density, n, and Light Speed

- As the optical density increases, the speed of light decreases.
- As the n value increases, the speed of light decreases.
- Most dense materials ⇒ Largest n values ⇒ Slowest light speeds
- Least dense materials ⇒ Smallest n values ⇒ Fastest light speeds

