Velocity Components of a Projectiles Lesson Notes

Projectile Review

- Projectiles display two independent and simultaneous motions - an x - and a y-motion.
- Gravity is a vertical force and causes a vertical acceleration. The vertical velocity is changing.
- The horizontal velocity is not affected by this vertical force; it
 remains a constant value.

Vector Diagrams

A vector diagram can be used to show the velocity (v) of a projectile during its fall.

- The horizontal velocity $\left(\mathbf{v}_{\mathbf{x}}\right)$ is constant.
- The vertical velocity $\left(v_{\mathbf{y}}\right)$ is changing.

Acceleration Caused by Gravity

- A free-falling object accelerates at $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
- This value is known as the acceleration caused by gravity or the acceleration of gravity.
- The $\mathbf{V}_{\mathbf{y}}$ value changes by $-9.8 \mathrm{~m} / \mathrm{s}$ (approx. 10 m / s) each second.
- The $\mathbf{V}_{\mathbf{x}}$ value remains constant.

Time (s)	$\mathbf{V x}(\mathrm{m} / \mathrm{s})$	$\mathbf{V y}(\mathrm{m} / \mathrm{s})$
0.0	8.0	0.0
1.0	8.0	-10
2.0	8.0	-20
3.0	8.0	-30
4.0	8.0	-40
5.0	8.0	-50

Angle Launched Projectiles

Consider a projectile launched from ground level upward at an angle: The horizontal velocity is constant; the vertical velocity is changing.

Consider a projectile launched from ground level upward at an angle. Initially, $\mathrm{v}_{\mathrm{x}}=8 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{\mathrm{y}}=30 \mathrm{~m} / \mathrm{s}$

Time (s)	$\mathrm{Vx}(\mathrm{m} / \mathrm{s})$	Vy (m/s)
0.0	8	30
1.0	8	20
2.0	8	10
3.0	8	0
4.0	8	-10
5.0	8	-20
6.0	8	-30

Predicting Time in Air

A projectile accelerates vertically at $-10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. So the time in the air can be predicted from knowledge of the original vertical velocity (voy).Predict the total time in the air for the following projectiles:

$$
\begin{gathered}
\text { In general ... } \\
\mathrm{t}_{\mathrm{up}}=\mathrm{v}_{\text {oy }} / 10 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\
\text { or } \\
\mathrm{t}_{\mathrm{up}}=\mathrm{v}_{\text {oy }} / 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}
\end{gathered}
$$

