# Velocity Components of a Projectiles

## Lesson Notes

#### **Projectile Review**

- Projectiles display two independent and simultaneous motions - an x- and a y-motion.
- Gravity is a vertical force and causes a vertical acceleration. The vertical velocity is changing.
- The horizontal velocity is not affected by this vertical force; it remains a constant value.



## **Vector Diagrams**

A **vector diagram** can be used to show the velocity (v) of a projectile during its fall.

- The horizontal velocity (v<sub>x</sub>) is constant.
- The vertical velocity (vy) is changing.



## **Acceleration Caused by Gravity**

- A free-falling object accelerates at 9.8 m/s/s.
- This value is known as the acceleration caused by gravity or the acceleration of gravity.
- The V<sub>y</sub> value changes by -9.8 m/s (approx. 10 m/s) each second.
- The  $V_x$  value remains constant.

| Time (s) | Vx (m/s) | Vy (m/s) |
|----------|----------|----------|
| 0.0      | 8.0      | 0.0      |
| 1.0      | 8.0      | -10      |
| 2.0      | 8.0      | -20      |
| 3.0      | 8.0      | -30      |
| 4.0      | 8.0      | -40      |
| 5.0      | 8.0      | -50      |

#### **Angle Launched Projectiles**

Consider a projectile launched from ground level upward at an angle: The horizontal velocity is constant; the vertical velocity is changing.



Consider a projectile launched from ground level upward at an angle. Initially,  $v_x = 8$  m/s and  $v_y = 30$  m/s



#### **Predicting Time in Air**

A projectile accelerates vertically at -10 m/s/s. So the time in the air can be predicted from knowledge of the original vertical velocity  $(v_{oy})$ .Predict the total time in the air for the following projectiles:



