Gravitational and Elastic Potential Energy Lesson Notes

Learning Outcomes

- What is gravitational potential energy and how do you calculate it?
- What is elastic potential energy and how do you calculate it?

Potential Energy as the Energy of Position

Potential energy is the energy stored in an object as a result of its position. There are several different types of potential energy. We will focus on **gravitational potential energy** (**PE**_{grav}) and **elastic potential energy** (**PE**_{elastic})

Gravitational Potential Energy

Gravitational potential energy (**PE**_{grav}) is the energy stored in an object as the result of its position within Earth's gravitational field. **PE**_{grav} depends upon the object mass and the object height.

Gravitational Potential Energy Equation:

The equation relating **PE**grav to **m** and **h** is:

g = gravitational field strength = 9.8 N/kg on Earth

Unit for PE: Joule (abbreviated J); 1 J = 1 kg•(N/kg)•m = 1 N•m

The "Zero Level"

The zero-height level is the arbitrarily assigned 0 height from which the height of any object is measured. One must assign a h=0 level before measuring heights. The most convenient choice should be made. Some choices may result in the PE being a negative value.

Using the PEgrav Equation in Solving Algebraic Problems

Basic Algebra: The PE_{grav} equation has three variables: PE_{grav} , m, and h. If you know the value of 2 variables, you can calculate the value of the 3^{rd} variable.

Three Forms of the KE Equation

1. Solving for Potential Energy (PEgrav) ...

Use $PE_{grav} = m \cdot g \cdot h$

2. Solving for Mass (m) ...

Use $\mathbf{m} = (\mathbf{PE}_{grav}) / (\mathbf{g} \cdot \mathbf{h})$

3. Solving for Height (h) ...

Use: $h = PE_{grav} / (m \cdot g)$

The Spring Force

When a force is applied to a spring, its coils either stretch or compress. The amount of stretch is proportional to the amount of applied force.

Elastic Potential Energy (PE_{elastic})

As a spring is stretched (or compressed) under the influence of a force, **elastic potential energy** (**PE**_{elastic}) is stored in the spring. The more stretch, the more **PE**_{elastic} that is stored. The equation for elastic potential energy is:

$$PE_{elastic} = \frac{1}{2} \cdot \mathbf{k} \cdot \Delta \mathbf{x}^{2}$$

$$\mathbf{k} = \text{spring constant (N/m)}$$
(The k value varies with the spring)