Acids

Acids are molecular compounds that contain hydrogen atoms and produce hydrogen ions when dissolved in water. There are two categories of acids: binary acids and oxyacids. Binary acids contain two types of elements: hydrogen and another nonmetal. Hydrogen, oxygen, and a nonmetallic element form an oxyacid.

Binary Acids

When *naming* a binary acid, you name the hydrogen ion and the nonmetal. The acid name is based on "hydro" for hydrogen, then the root of the second element's name, followed by "*ic acid*."

For example, HCl is made of **hydrog**en and **chlor**ine, so as an acid, it is named **hydrochlor**ic acid. And H**Br** is hydro**brom**ic acid, H₂**S** is hydro**sulfur**ic acid.

- 1. Name these binary acids.
 - a. HF
 - b. HI
 - c. HAt
 - d. H₃N
 - e. H₂Se

When *writing the formula* for a binary acid, you **crisscross** the charges of the ions – just like in writing formulas for binary ionic compounds. Remember, the net charge must equal zero.

Hydrochloric acid is made of hydrogen and chlorine. H⁺ and Cl⁻ form HCl.

Hydrosulfuric acid is made of hydrogen and sulfur. H⁺ and S²⁻ form H₂S.

- 2. Write the formula for these binary acids.
 - a. hydrobromic acid
 - b. hydroiodic acid
 - c. hydroselenic acid
 - d. hydrophosphoric acid
 - e. hydroastatic acid

Names and Formulas

Oxyacids

3.

When *naming* an oxyacid, the name is based on the hydrogen and the polyatomic ion. In the name of the acid, the polyatomic ion will have a new ending, and the "hydro" prefix will **never** be used in the name of the acid. For example,

1. The polyatomic ion with ending -ite becomes -ous acid

NO₂· is the nitrite ion. When it combines with hydrogen to form an acid: HNO₂ is nitrous acid.

 SO_3^{2-} is the sulfite ion. When it combines with hydrogen to form an acid: H_2SO_3 is sulfur**ous** acid.

2. The polyatomic ion with ending -ate becomes -ic acid

 NO_3 is the nitrate ion. When it combines with hydrogen to form an acid: HNO_3 is nitric acid.

 SO_4^{2-} is the sulfate ion. When it combines with hydrogen to form an acid: H_2SO_4 is sulfuric acid.

Name these oxyacids. a. H ₂ CO ₃	
b. H ₂ Cr ₂ O ₇	
c. HClO ₄	
d. H ₃ PO ₃	
e. HMnO ₄	

When *writing the formula* for an oxyacid, you **crisscross** the charges of the ions – just like in writing formulas for binary acids. Remember, the net charge must equal zero.

Chlorous acid is made of hydrogen and chlorite. H+ and ClO₂- form HClO₂.

Chromic acid is made of hydrogen and chromate . H^+ and CrO_4^{2-} form H_2CrO_4 .

- 4. Write the formula for these oxyacids. a. acetic acid
 -
 - b. phosphoric acid
 - c. arsenous acid
 - d. oxalic acid
 - e. hypochlorous acid (Note: the prefix is hypo, not hydro)